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This DC brushless servo system uses quadrature optical encoders to provide velocity and position feedback to the motion controller. See article inside, page 3.
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MAXIM REPORTS REVENUES AND EARNINGS FOR THE THIRD QUARTER 
OF FISCAL 2003 AND DOUBLES QUARTERLY DIVIDEND

Maxim Integrated Products, Inc., (MXIM) reported net revenues of $286.2 million for its fiscal third quarter ending

March 29, 2003, a 10.7% increase over the $258.5 million reported for the third quarter of fiscal 2002 and unchanged from

reported revenues for the second quarter of fiscal 2003. Net income for the quarter was $77.6 million, a 16.3% increase over the

$66.7 million reported last year and a 0.7% increase over the $77.1 million reported for the previous quarter. Diluted earnings

per share (which measure the cost of employee stock options and include the Company’s average outstanding common stock for

the quarter, or 322.9 million shares, increased by 19.0 million shares using the Treasury Stock Method) were $0.23 for the third

quarter, a 21.1% increase over the $0.19 reported for the same period a year ago and unchanged from reported second quarter

fiscal 2003 results.

During the quarter, cash and short-term investments increased $111.0 million after the Company repurchased 650,000

shares of its common stock for $20.0 million, paid dividends of $6.5 million, and acquired a total of $8.6 million of capital

equipment. Inventories decreased $4.2 million during the quarter to $123.8 million.

Third quarter bookings were approximately $308 million, a 14% increase over the second quarter’s level of $271 million.

Turns orders received during the third quarter were $165 million, a 19% increase over the $139 million received in the prior

quarter (turns orders are customer orders that are for delivery within the same quarter and may result in revenue within the same

quarter if the Company has available inventory that matches those orders). This is the highest level of turns orders that the

Company has received since the first quarter of its 2001 fiscal year. Order cancellations were $4.6 million, a decrease of 41%

from the prior quarter. Bookings increased over the second quarter’s level in all major geographic regions except Japan, where

bookings were down 5% sequentially. Twelve of the Company’s 14 business units had improved bookings in the third quarter.

Eleven of those 14 business units had a bookings increase of at least 10% over the previous quarter.

Third quarter ending backlog shippable within the next 12 months was approximately $219 million, including 

$196 million requested for shipment in the fourth quarter of fiscal 2003. Second quarter ending backlog shippable within the next

12 months was approximately $201 million, including $177 million requested for shipment in the third quarter of fiscal 2003.

Jack Gifford, Chairman, President, and Chief Executive Officer, commented on the quarter: “We were encouraged to see

the increase in orders this quarter, particularly the improvement in bookings by Dallas Semiconductor. Orders improved not only

for our power management and communications products, but also for our standard products that have very broad-based markets

and applications. The continued increase in turns orders in the third quarter may indicate that our customers are getting increased

demand for their products quarter over quarter. We see no signs of inventory build-up either at our distributors or at our end

customers and believe that the current shipping level is close to or slightly below the current consumption level for our products.”

Mr. Gifford continued:  “Based on the Company’s profitability, strong cash position, and business outlook, the

Company’s Board of Directors has increased this quarter’s dividend from $0.02 per share to $0.04 per share. Payment will be

made on May 30, 2003 to stockholders of record on May 12, 2003.”

Mr. Gifford concluded:  “Maxim is opposed to expensing employee stock options, as we believe that this concept is bad

accounting. We believe that the Treasury Stock Method both rigorously and accurately defines the cost and resulting dilutive

effect of stock options on reported earnings. We fear that requiring U.S. corporations to expense stock options could seriously

damage our country’s leadership position in technology innovation and our ability to effectively compete with other countries.

Our nation’s technology leadership over the past 15 years has caused some to forget the economic effect during the 1970s of our

country’s losing our technology leadership to Japan. Entrepreneurial individuals and companies, given incentive by stock

options, reversed this situation. This impact on the U.S. economy and its people in the 1970s has been too easily forgotten. The

potential damaging long-term effect on our nation’s economy and lifestyle resulting from the forced expensing of stock options

should be taken very seriously.”



Designing robust
and fault-tolerant
motion-control
feedback systems
Today’s demanding industrial applications require
rugged, reliable robots and automated machines that
operate under harsh conditions 24 hours a day, seven
days a week. Such systems require far more precise
motors and feedback controls than were formerly
necessary, and much of the improved performance
available today can be attributed to newer technologies
and to microelectronics. Those innovations provide more
robust automated systems by eliminating robot collisions
in shared work-spaces, improving task assignments, and
honing servo accuracies.

The key to robust operation in a system lies in the way it
handles mechanical and electrical faults. This article
discusses the design of a robust and fault-tolerant motion-
control system whose feedback paths incorporate quadra-
ture encoders.

Servo Systems 
Modern automated systems incorporate closed-loop
feedback for motion control. They typically include a
servo system that consists of a motor driver and feedback
elements combined in a manner that gives accurate and
stable control over speed and position. The various
system-level components of a typical servo system are
illustrated in Figure 1.

DC brushless motors are preferred for high-performance
and high-speed applications. DC brush and stepper
motors are suitable for low-speed and less-demanding
applications. Brushless motors are assumed throughout
this article. Such motors typically include a quadrature
encoder on the end shaft that determines the shaft
velocity and commutation point for controlling the
motor’s coil-switching sequences (see sidebar, Feedback
encoder types). A second quadrature encoder on the
machine’s rotating shaft provides position data for that
shaft, which generally differs from the motor-shaft
position due to inaccuracies caused by backlash in the
gearhead and lead-screw assemblies.

Typical motion-controller cards and modules include a
motion-control IC, a microprocessor, and a DSP or

custom ASIC for processing the high-speed encoder
signals. The controller provides velocity and direction-of-
rotation signals to the driver or amplifier, which in turn
provides the proper levels of voltage and current (power)
to operate the motor. To design a robust and fault-tolerant
motion-control system with feedback, you must address
the following items at the system level during design:

• Controller-encoder input circuits (receiver circuits)

• Receiver circuit PC board layout

• Encoder-signal cabling system

Though not addressed in this article, motion-controller
inputs, such as hard-wired emergency stop and limit
inputs, should also be considered when designing a fault-
tolerant feedback system.

Controller receiver circuits 
The motor’s quadrature encoder sends six RS-422/RS-485
signals (A, A\, B, B\, Index, and Index\) down the cable to
the motion controller’s receiver circuit (the encoder input).
The receiver converts the RS-422 signals to logic-level
signals (we assume RS-422 signals because the system has
only one transmitter), and feeds them to the motion-
controller circuit for processing. (For RS-422 and RS-485
differences, refer to the short online tutorial RS-485 Basics
at www.maxim-ic.com.) The receiver circuit must respond
to various faults in the servo-system environment,
including opens, shorts, and noise. See the sidebar Fault
types for information on faults and ESD.

Figure 2 illustrates the encoder-input receiver circuit in a
typical motion controller. U1 is a 10Mbps, 5V, quad 
RS-422/RS-485 receiver with ±15kV ESD protection.
For fault-tolerant systems with encoder inputs that connect
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Figure 1. This DC brushless servo system uses quadrature optical
encoders to provide velocity and position feedback to the
motion controller.
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to external components, ESD protection is a must. The
absence of external ESD-protection components substan-
tially reduces the PC board area required for this circuit.

The 150Ω resistors provide proper terminations for each
group of complementary signal pairs transmitted down
the twisted-pair cable from the quadrature encoder.
(Cable termination and related issues are covered in detail
later.) A break or disconnect in the cable produces an
open-circuit fault that must be detected before the motion
controller can take appropriate action. As a fail-safe
measure, the MAX3095 receiver outputs assert a logic
high in response to an open-circuited input pair. The 1kΩ
resistors bias the receiver’s “A” inputs at least 200mV
above its “B” inputs. They are also necessary for main-
taining fail-safe outputs in the presence of the input-
termination resistors. This circuit provides ESD protec-
tion, open-circuit detection, and output short-circuit
protection, but does not detect short-circuited inputs.

An improved circuit (Figure 3) includes two ICs, each of
which includes three RS-422/RS-485 receivers. Each

receiver provides built-in fault detection, ±15kV ESD pro-
tection, and a 32Mbps data rate. The MAX3098E detects
open- and short-circuited encoder inputs. It also detects
low-voltage differential signals, common-mode range
violations, and other faults. Its logic-level outputs indicate
which receiver input has the fault condition. By reporting
the fault directly, that feature reduces software overhead
and minimizes the need for external logic components.

A fault on any encoder input produces an immediate
logic high on the corresponding output: ALARMA,
ALARMB, or ALARMZ. Slow movement of the servo
system can produce transient faults at the quadrature-
encoder signal’s zero-crossing region, thereby triggering
a “false fault.” You can delay the ALARMD output
(logic OR of ALARMA, ALARMB, and ALARMZ) for
a desired interval by selecting the C_Delay value. The
120Ω resistors provide proper RS-422 terminations for
the cable. Because the IC is available in a 16-pin QSOP
package, this circuit requires fewer components and
occupies a very compact space on the PC board.

4

Figure 2. Part of a motion controller, this encoder-input receiver circuit features open-line detection and ESD protection (internal to the MAX3095) 
on all encoder input lines.
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Receiver circuit PC board layout
A proper layout of the receiver circuit starts with the RS-
422 encoder’s input connector. The differential signal
pairs A A\, B B\, and Index Index\ must occupy adjacent
pins on the connector. This configuration minimizes
signal imbalance by ensuring that the differential pair’s
returning signal-current paths overlap and cancel. Typical
component placements are shown in Figure 4. To ensure
that each PC board trace has the same parasitic capaci-
tance, route each differential pair of traces close together,
with equal lengths, and with symmetrical bends.

To minimize inductive and capacitive crosstalk on the
digital outputs and provide lower inductance, differential
RS-422 signals from the connector and the receiver
circuit should be laid over a solid ground-plane layer
within the PC board. No high-current signals should flow
in this ground plane.

The high-speed current switching in motion controller
circuits can produce common-mode noise. The use of

filters and bypass capacitors helps to reduce the effect of
common-mode voltages coupled onto the power supply
lines. You should place a 0.1µF bypass capacitor close to
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Figure 4. A MAX3098 triple RS-422/RS485 receiver with fault
detection ensures proper PC board routing and component
placement for the encoder inputs of a motion controller.
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the receiver’s VCC input. To minimize inductance in the
bypass loop, the capacitor’s ground lead should connect
directly to the solid ground plane, as should the IC
ground pin through a via placed adjacent to it. Finally, to
minimize noise coupling to the receiver circuits, routing
receiver traces near to or adjacent to any power circuits
should be avoided.

Encoder signal cable 
Because the differential signals from a quadrature
encoder are balanced, they can be transmitted on regular
paired cable, but twisted-pair cable is preferred. Twisted-
pair cables have very low-inductance coupling and a
constant impedance up to several megahertz, which
enables exceptionally high-speed performance in motion-
control systems. Twisted-pair cables also help to reduce
radiated and received EMI.

Twisted-pair cable is available shielded or unshielded.
Unshielded cable is smaller, costs less, weighs less, and is
bendable in a smaller radius, but shielded twisted-pair
cable must be used for the differential quadrature-encoder
signals. Shielded twisted-pair cable provides better
common-mode rejection, because the shield offers addi-
tional protection from electric and magnetic interference
(EMI). The nonideal twists in an actual unshielded
twisted-pair cable allows a dramatic increase in EMI
noise. Connect the shield wire to the receiver’s ground
plane at the encoder-input connector.

The encoder’s signal cable should not carry power-level
signals or any other signals at all. Nor should it be routed
close to or parallel to other cables or conduits that carry
power-level signals or other noisy signals, including
60Hz power.

Modern, high-speed servo-control systems operate with
encoders that provide data rates up to several megahertz.
At such high rates, the encoder-signal cable must be
properly terminated with a terminating resistor or
network at the receiver end. Ideally, the terminating
resistor has the same value as the cable’s characteristic
impedance.

Because only one transmitter (encoder output) is on the
RS-422 network (one transmitter and one receiver), the
transmitter does not require a terminating resistor.

Ringing and reflections on a nonterminated receiver
input, however, can restrict the data throughput to several
hundred kilobits per second. Matching the characteristic
impedance of a cable to within ±20% is usually more
than adequate. Proper termination of encoder cables is
illustrated in Figures 2 and 3.

Thus, modern high-speed servo systems can be designed
for a robust and fault-tolerant motion-control feedback
system. Receiver circuits for the motion controller must
respond predictably to the various faults that can develop,
and a proper PC layout for the receiver circuit prevents
noise problems in the encoder data. A designer should
also consider the quadrature encoder’s signal-cabling
system, including terminations at the receiver circuit.
These precautions produce a robust motion-control
feedback system that is stable and predictable during fault
conditions.

Glossary of terms

Backlash: The mechanical play between two or more
adjacent gears.

Index: On a quadrature encoder, the output signal that
provides one pulse per revolution.

Latchup: Complete failure in an IC, or momentary loss of
operation.

Resolution: The number of bits in an output signal, or (for
quadrature encoders) the number of cycles per revolution.
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Fault types (FT)
Opens, shorts, and a condition intermediate between the
two are the faults most obvious at the system level. Motors
and feedback encoders are usually located tens to hundreds
of feet from the servo-system controller/amplifier.
Connectors terminate these long cable runs at both ends,
and it is possible for wires to fall out of the connectors, for
connectors to break, and for cables to be inadvertently
opened. When end connectors break open or wires sever
due to machine vibration, the open or short fault often
exhibits several open/reconnect or short/open cycles
similar to the contact bounce in a switch before opening up
or shorting completely. Because feedback-encoder signals
are usually transmitted down a twisted pair, the differential
signals are likely to short together during a short fault.

Intermediate faults can develop when the resistance or
capacitance of a feedback wire increases, as is possible
when a poor installation pinches the cable. Such problems
can also manifest during later operation. When moisture
enters a damaged cable jacket, for example, the cable
capacitance can increase over time, causing signal strength
to decrease. That condition is common in heavy industrial
environments, where automated equipment can require a
daily wash-down. The cable remains operational even
though its performance degrades over time. As a precau-
tion, you should include a circuit for detecting moisture-
contamination faults.

Noise faults can be the most difficult to eliminate, because
noise can originate from electromagnetic interference
(EMI), radio-frequency interference (RFI), and/or ground
or system-level ground loops. System-level noise sources
(radiators) include:

• Arcing of DC-motor brushes during commutation

• High-speed dv/dt switching noise from PWM motor
amplifiers

• High-power relays, switches, and actuators such as
solenoids

• Random turn-on of SCRs and TRIACs during the 60Hz
AC cycle

• Switching power supplies

• Electrostatic discharge

Noise receivers (antennas) include long cables, ground
connections, long high-impedance traces on PC boards,
and transformers. Noise problems require a method of
coupling between a receiver and a radiator, such as capaci-
tive, inductive, or conductive coupling. Capacitive

coupling typically occurs in high-impedance circuits when
wires or other ungrounded pieces of metal pick up or
generate electric fields. For a circuit to couple noise capaci-
tively, the circuit’s loop impedance must exceed the
intrinsic impedance of air (376.7W).

Inductive coupling typically occurs with low-impedance
circuits for which the circuit’s loop impedance is less than
376.7W. Wires, open-core inductors, and transformers pick
up or generate magnetic fields that can cause EMI noise.
The current loops for these circuits must be minimized
during design and installation.

Conductively coupled noise usually enters the circuit at
ground. For DC noise, it takes the path of least DC resis-
tance in the ground plane, and for AC-coupled noise, the
least impedance. As a result, the circuit reference point
(ground) tends to be at a voltage above or below its normal
value, or (worst case) a dynamically changing value.

Ground loops formed between the AC-power neutral and
system-level ground can generate random noise by causing
ground current to flow. Ground current can be driven by
voltage differences, induction from other cables or devices,
wiring errors, ground faults, or the normal equipment
leakage that occurs in an industrial environment.

Common-mode noise, defined as common to two nodes
that are floating or exhibiting high impedance, can be AC
or DC. Common-mode noise can be inherent in the system
design, but is usually coupled inductively or capacitively
from an external source. A 60Hz signal from the power
line, for example, lying adjacent to a pair of signal wires
from an analog sensor, can couple inductively onto the
wires and drown out the low-level sensor signal. 

Electrostatic discharge (ESD) develops when two dissim-
ilar materials come together, transfer charge, and move
apart, producing a voltage between them. IC pins that
connect to external connectors are susceptible to ESD
when a technician connects or disconnects those cables
during maintenance.

ESD injected into the pins of an IC can cause the IC to latch
up or fail completely. Very high currents can flow during
latchup, causing the main power supply to current limit, or
causing the system to enter an uncontrolled shutdown. IC
pins exposed to external signals or connectors without
internal ESD protection must incorporate ESD protection
such as metal-oxide varistors, or silicon avalanche suppres-
sors such as TransZorbs. ICs with built-in ESD protection
save PC space, and thereby support the drive for smaller
form factors and smaller industrial enclosures.
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Feedback encoder types (FE)

To attain accurate positioning, a servo system requires a
feedback signal to close its feedback loop. Instruments
that typically provide the feedback signal include optical
encoders, resolvers, and quadrature magnetostrictive
linear-displacement transducers. Other instrument types
for this purpose are not discussed in this article. They
include analog tachometer generators, induction genera-
tors, Hall-effect pickups, and potentiomentric devices.

Optical encoders, which provide a digital square-wave
feedback signal, include quadrature (incremental),
absolute, and pseudorandom types. A typical optical
encoder consists of the emitter side, the detector side, and
a code wheel, which provides a raw analog signal to the
encoder’s processing circuitry. A comparator stage then
converts the analog to a digital output. Digital formats
include open-collector outputs and (for single-ended
outputs) 5V–24V logic. For noise immunity, the most
robust outputs are the complementary, differential RS-422
types.

Quadrature optical encoders provide feedback signals in
the form of A, B, and Z pulses. The A and B signals
exhibit a phase separation of 90∞ from the encoder's code
wheel and are, therefore, in quadrature (i.e., electrically
spaced one-fourth of a period apart). When A goes
positive prior to B, the encoder is rotating clockwise, and
vice versa for counterclockwise rotation. Thus, position,
direction, and velocity data can be derived from these two
signals. The Z signal indicates the motor’s rotor position,
and whether the encoder shaft has rotated 360∞. It also
checks for miscounts of the A and B signals. For RS-422
connections, the encoder provides complementary signals
for the A, B, and Z outputs.

Absolute optical encoders employ signal-processing
components similar to those of the quadrature optical
encoder, but their outputs provide one parallel binary
word per increment of revolution. Typical outputs are
twelve to thirteen bits of BCD, gray, or natural binary
code, and the 13-bit outputs impose a lower frequency
response (1200 RPM for 12 bits vs. 600 RPM for 13 bits)
in exchange for the finer resolution per 360∞ rotation.
This encoder type is typically used for monitoring shaft
position during power-up and power-down because,
unlike quadrature encoders, the encoded output lets you
read the shaft position without moving the encoder.

The new pseudorandom optical encoders provide three
output signals: A and B provide direction sense and spatial
timing, and a third provides position data. Pseudorandom

optical encoders require 1-2∞ of rotation to determine
position.

Resolvers are feedback encoders that provide sine and
cosine output waveforms, which can be processed to
provide velocity and position data through the servo
controller. A resolver’s feedback signals represent
absolute position when its shaft is rotating, but low-speed
performance is poor. The main disadvantage of a resolver
is the relatively expensive resolver-to-digital electronics
necessary for processing its signals.

Finally, quadrature magnetostrictive linear-displacement
transducers (LDTs) are feedback encoder/transducers
designed to measure linear motion, rather than the rota-
tional motion measured by encoders above. The analog
position signal is developed from a current pulse sent
down a magnetostrictive guide wire, interacting with a
position magnet that moves with a linear-displacement rod
protruding from the LDT. The reflected pulse is sensed by
a pickup sensor. The LDT then processes and digitizes the
pickup sensor signal to provide quadrature-output signals
A, B, and Z, similar to those of a quadrature encoder.



Finding the middle
ground
Developing applications with
high-speed 8-bit microcontrollers
Software developers for personal computers have a
number of advantages over embedded developers. Not
only do they develop for systems that rival the power and
memory of supercomputers of just a few years previous,
but the systems they develop for generally already exist.
Embedded developers, on the other hand, not only have to
develop on much smaller systems, but they usually have to
design the system first. An approach must be chosen based
on the size of the problem. If the problem has little user
interaction, controls a small number of devices, and is a
relatively simple design, it can be tackled with a low-
power, 8-bit microcontroller, like an 8051, 68HC11, Amtel
AVR, or PIC variant. These usually provide adequate
power and flexibility. If the problem has large amounts of
user interaction, needs to talk over Ethernet, or needs to
talk to complex devices like digital cameras, then usually a
PC-104, StrongARM, or another type of “one-calorie
personal computers” is used. These generally provide
abundant processing power, complex operating systems,
and large amounts of RAM.

There is a gray zone in between. For example, let’s say
Joe's Security Service is entering the cutthroat market of
network door locks. Due to recent security alerts,
companies want to install door locks that log users with
more than just an ID number. They want electronic door
locks that take a photo of either the person's face or their
thumbprint whenever the user wants to open the door.
These images are sent over a network to a central server
either for logging or, in a complex example, image recog-
nition and validation. If the image is validated, the server
sends back a response to the network door lock, and the
door opens for the user. Joe would like to have his
customers install many doors throughout their facilities, so
it is important to keep costs low. 

One of Joe’s competitors, Alex’s Security Central, is
developing a network camera door lock using an 8-bit
RISC connected to an Ethernet controller. Joe dismisses
this solution as underpowered. He knows that there have
been a number of projects involving connecting these
Harvard-architecture chips to an Ethernet controller.
However, many of these projects are in their infancy, none 

of them are commercially supported, and the TCP/IP stack
is limited by the architecture itself. If talking over the
network did not disqualify them, talking to a digital
camera would. An adequate image would require 40kB to
60kB of memory, which has to compete with the code
memory space as well. Even if he was using something
with non-Harvard architecture, there is just too much
work to be done and data to be processed with a tradi-
tional 8-bit microcontroller. 

Joe’s arch nemesis, Troy of Troy’s X-Treme Security, is
also developing a solution. Joe hates Troy because Troy
has no respect for the art and finesse of embedded system
design. For romance’s sake, we will also say that Troy is
dating Joe’s ex-girlfriend, Amiga, who left Joe because he
spent too much time at the computer (also known as an
“occupational hazard” among embedded system devel-
opers). Troy is developing a solution using a StrongARM
running Pocket PC, which has speedy I/O and networking
capabilities. Joe sees this solution as overkill. Beyond
taking a photo, the processor will sit idle most of the time.
The ideal solution does not need a lot of memory or
power, so running embedded Linux or Pocket PC would
add unnecessary bloat, and too much cost, for such a
simple device.

What Joe needs is a microcontroller powerful enough to
handle the network and the camera, but less expensive and
functional than a 32-bit solution. It would help Joe if it
supported a higher level language than pure assembly in
order to simplify development. How will Joe be able to beat
Alex’s power, Troy’s price, and win back his true love?

Enter TINI®.

A network bridge
TINI, or tiny Internet interfaces, is a product of Dallas
Semiconductor. The TINI platform is designed to work as
a network bridge: a PC can talk to TINI over TCP/IP, and
TINI talks to a sensor, legacy hardware, or other device.
TINI offers a number of external interfaces, including 
1-Wire®, 2-wire, RS-232 serial, CAN, and SPI™. TINI has
a robust networking implementation, and offers support for
IPv4, IPv6, DNS, DHCP, PPP, Telnet, and FTP. 

There are two reference designs available. The most
common, the TINIm390 verification module based on the
DS80C390, is a 72-pin SIMM that includes 512kB of
flash, 512kB or 1MB of battery-backed SRAM, an
Ethernet controller, and a real-time clock. The new
version, the TINIm400 verification module based on the
DS80C400, is a 144 SO DIMM with similar features,
except the Ethernet MAC is built into the DS80C400. 
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The 390 and the 400 are both 8-bit microcontrollers. In
fact, they are both 8051 microcontrollers at the core.
However, they have been heavily expanded from their
original roots. First, their cores are 4 cycles-per-instruction
instead of the standard 12. This gives a triple-speed
increase over standard 8051s at the same clock frequency.
Second, they have much higher addressing capabilities.
The 390 supports 4MB of program memory and 4MB of
data memory, and the 400 supports a flat 16MB address
space. Third, they support much higher clock frequencies.
The 390 can run up to 40MHz, while the 400 can run up to
75MHz. Lastly, they both have integer math accelerators
for multiplication and division. They offer a middle range
of power between a traditional 8-bit microcontroller and a
16-/32-bit microcontroller.

A unique feature of the TINI platform is the operating
system developed by Dallas. It is a royalty-free, multi-
tasking, multithreaded operating system that boasts a
Java™ runtime environment and is available as a free
download. The core OS and libraries fit into a 512kB flash
with enough room for a 64kB application in the last flash
bank. The DS80C400 also contains a ROM library for C
and assembly programming.

Network camera
To show what is possible regarding the problem of the
network camera, the TINI is used to implement a
streaming web camera and to benchmark performance.
Rather than use the TINIm400 reference design, a custom,
high-speed DS80C400 design is used (Figure 1). The
network camera discussed here will take raw images and
send them over UDP to a PC host. It will talk to the PC
either using host-side software, or through a Java applet
served over HTTP.

The camera chosen is the M4088 module, which uses an
OmniVision 5017 CMOS chip. The camera is a noninter-
laced, black and white digital camera with a 384 x 288 pixel
resolution. The camera exposes 8 data lines, 4 address lines,
and the chip select, allowing it to be memory mapped easily.
It also exposes a vertical sync line that asserts when an
image is being taken, a horizontal sync line that asserts for
every scan line, and a pixel clock that informs when a pixel
is coming. Once the camera is initialized, accessing it from
software is easy. The 5017 has an internal clock divider that
allows programmatic control of the frame rate. It also has a
single frame mode, which allows the host device to control

when an image is taken. This is useful, since this design does
not have the processor power to handle the camera’s top
speed of 50 frames/s.

The 400 version of the camera is designed to run at 73MHz
(18.4MHz x 4). The 400 has a built-in Ethernet MAC, but
it needs an Ethernet PHY and magnetics. It supports many
other PHYs, such as HomePNA and HomePlug PHYs. An
Intel LXT972A is used in this example, which connects
directly to the 400 using a standard MII interface (Figure
2). The PHY requires its own 25MHz clock.

The camera must have 12ns memory for execution. A
Hitachi HM62W8511H is used, which provides the
necessary access time. On boot, the processor executes
bootstrap code from flash that copies the executable image
from flash to SRAM, flags the clock quadrupler to be
enabled, and jumps to the TINI starting address. The board
does not have the battery backup or nonvolatizer on this
configuration that is available on the TINIm400, as the
high-speed SRAM would drain the battery too quickly.
This means that TINIOS does not have a persistent file
system. This is not as much of an issue as it seems since, as
can be seen later, TINI will build the file system on startup.

TINIOS requires a DS2502 for MAC address storage.
While not required, there also is a DS1672 real-time clock
connected over I2C™. This gives TINI access to the clock
in software, but provides an additional bonus feature. On
boot, if a real-time clock is detected, TINIOS autocalcu-
lates the system bus speed and adjusts its internal timers
accordingly, including serial port baud rates, timer ticks,
and network timings.

Connecting the camera is straightforward; A0–A3, D0–D8,
and WEB hook to the appropriate lines. The CE4 is con-
nected to the camera's CSB line, which maps the camera at
0 x 800000. The VSYNC line of the camera is connected
to the P1.1 line for reading, and PSEN to the OEB camera
line. The HREF line must be inverted before connecting it
to INT1 so that level-triggered interrupts can be used.
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Figure 1. This diagram illustrates the design of the high-speed DS80C400.
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Software implementation

For development, the TINI SDK is used, which is
available as a free download from the Dallas Semi-
conductor website. One might assume that a Java virtual
machine would not have sufficient power to capture the
camera data fast enough. However, TINI allows for
interrupt service routines to be installed under the
operating system that communicates with the application
using native methods. This shows one of the strengths of
the TINI platform; high-level protocols (like HTTP) can
be implemented in pure Java, while high-speed portions of
code can be implemented with native 8051 assembly. In
many ways, it is the best of both worlds.

TINI supports the following packages from JDK 1.1:

java.io
java.lang
java.net
java.util
javax.comm

Some differences do exist between TINI's JVM and a PC's
JVM. First, while TINI supports garbage collection, it does
not support finalizers. This means the programmer is
required to close their resources explicitly instead of
having it done by the system, but this kind of resource
management is a good idea in embedded development
anyhow. TINI also has some size limitations on classes:
any individual class file cannot be larger than 64kB, a
method can only have 63 locals, and arrays can only be
64kB in length. The system is also limited to 8 processes,
and 32 threads per process. Not all the differences are limi-
tations, though. For example, the 1.1 JDK does not have
any support for IPv6, so the TINI implementation comes
from the 1.4 JDK. 

In addition to the standard Java classes, TINI provides the
following packages:

com.dalsemi.comm
com.dalsemi.fs
com.dalsemi.system
com.dalsemi.tininet
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Figure 2. The DS80C400 connects to the PHY using a standard MII interface.
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These packages provide both low-level system access and
support for other protocols, like CAN and I2C. TINI also
has support for a number of high-level protocols. For
example, one of the examples in the TINI SDK is a
lightweight (3kB .class file) HTTP server. 

The software follows the design outlined in Figure 3. At
the bottom layer is the camera interrupt service handler,
which holds a persistent pointer to the camera buffer in
indirect memory. The camera is set to single-frame mode,
where it waits for a command before transmitting the
image. Once flagged, the image is transmitted
synchronously at a rate controlled by the FRCTL register.
On the 400, the camera has been set to a rate of 10
frames/s, which transmits a 384 x 288 image in 1/10th of a
second at a transfer rate of 1080kB/s. 

Talking to the camera using an 8051 assembly is relatively
easy. Each pixel of the image is read synchronously from
one camera register. Since the camera is memory mapped,
reading and writing from its registers involves pointing
the data pointer at the camera address and executing a
movx opcode. In a traditional 8051 assembly, moving
from one address to another would involve loading the
data pointer, reading memory into the accumulator, setting
the address to have it copied to the data pointer, and
writing the accumulator to memory.

mov R0,#LOW(MEMORY_LOW)
mov R1,#HIGH(MEMORY_HIGH)

camera_loop:
;
; Move the camera address into the data pointer.
;

mov dptr,#CAMERA_ADDRESS
;
; Move the data into the accumulator.
;

movx a,@dptr
; 
; Move to the address we will be writing to. Since
; this will increment every time, we will keep
it stored
; in registers. We will also need to move it one
byte at
; a time using the DPL and DPH SFRs.
;

mov dpl,R0

mov dph,R1
;
; Write the accumulator to the address

movx @dptr,a
;
; Increment the data pointer and store back in
R0 and R1.
;

inc dptr
mov R0, dpl
mov R1, dph

; Do the loop again...

The DS80C400 has four data pointers, allowing for data to
be quickly copied from one address to another. This
removes all the address swapping, making a copy run
much faster.
;
; Set up the data pointers. We use the DPS
register to select
; what data pointer we want to use. A data
pointer move allows
; for a 24-bit address to be loaded directly.
;

mov dps,#0
mov dptr,#CAMERA_ADDRESS

mov dps,#1
mov dptr,#MEM_ADDRES

; 
; Set data pointer 0 as the current data pointer.

mov dps,#0
camera_loop:
;
; Read from data pointer zero.
;

movx a,@dptr
;
; Switch to the next data pointer. Note that doing 
; an inc on this register only affects the data 
; pointer-selection bit. This allows one cycle
toggling
; from one data pointer to another.
;

inc dps
;
; Store the data and increment the address.
;

movx @dptr,a
inc dptr

;
; Switch back to the first data pointer.
;

inc dps
;
; Do the loop again...
;

As can be seen, the loop runs faster because most of the
address handling is done outside of the loop. For memory
copies, the DS80C400 also has optimizations for even
faster copies. First, all data pointer increments are
performed in a single cycle. An autoincrement mode,
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Figure 3. TINI streaming camera software supports both low-level 
and high-level protocols.
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when enabled, can automatically increment the address in
the data pointer after a read or write is performed. Also, an
autoselection feature can be enabled to toggle between
two data pointers with every read or write operation. This
makes a memory copy incredibly easy.
; 
; Set the base address of data pointer zero.
;

mov dps,#0
mov dptr,#ADDRESS1

;
; Set the base address of data pointer one.

mov dps, #1
mov dptr,#ADDRESS2

;
; Enable autoselection and autoincrement.
;

mov dps, #(DPS_AID | DPS_TSL)
memory_loop:
;
; Read from data pointer 0, increment the
; data pointer, and toggle the selection bit
; in one instruction.
;

movx a,@dptr
;
; Write to data pointer 1, increment the data pointer,
; and toggle the selection bit in one instruc-
tion.
;

movx @dptr,a

; Loop...

Back to the example, the HSYNC line is used to generate
the interrupt. When the camera asserts the HSYNC line on
each scan line, the ISR fires and begins to capture data. In
order to improve performance, all other interrupts have
been moved to low priority, including the scheduler. This
has a noticeable effect on image quality. 

The camera has a programmable window which allows
the user to configure how much of the 384 x 288 image to
use. Finding an appropriate image size is difficult; a large
image has increased quality, but takes more time to
transmit and reduces frame rates. For this application, Joe
sets the camera to a 240 x 180 resolution. This is a
standard resolution for Internet video, and has an addi-
tional hardware advantage. Looking at Figure 4, when the
camera is transmitting the image, it actually enumerates
every pixel the image array, but only asserts the HSYNC
line for pixels inside the specified window. This means
that an image capture consumes about 3/5 of the CPU
during the 100ms period. 

On initialization, the camera software allocates a 95kB
contiguous block of memory from the memory manager,

which is used for double buffering. In Java, one thread
handles all of the image capture, while another thread
handles transmitting the image over the network. Java
simplifies this by providing all of the threading and
locking mechanisms necessary. 

Above the ISR in the software design are the native
methods that provide the camera driver for the Java virtual
machine. The TINI platform uses the TINI native interface
(TNI) to allow developers access to low-level code from
Java. Native methods can call into the TINIOS native API,
allowing them access to the memory manager, scheduler,
and other operating system internals. They can have
parameters passed to them, and even throw exceptions like
other Java methods. These are linked to the Java
executable through a TINI dynamically linked library
(TLIB), which can be built using the TINI developers kit. 

The native methods allow Java to send commands to the
camera. The camera driver class has the following defini-
tion:

public static final int IMAGE_BUFFER_0 = 0;
public static final int IMAGE_BUFFER_1 = 1;

/**
takePhoto takes a photograph and stores it in 
the memory.
@param buffer Species what image buffer to use.
Use IMAGE_BUFFER_0 or IMAGE_BUFFER_1
*/

static native void takePhoto(int buffer);

/**
getScanlines pulls a fixed number of 
scanlines out of the memory buffer. This 
allows the Java application
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Figure 4. The HSYNC line is asserted for each individual scan line. 
In A, the pixel window has been set to the full 384 pixels, 
while in B it has been set to 192 pixels, beginning at the left 
edge with both set to the same frame rate. Marker 1 is where 
the scan line is asserted by the camera, marker 2 is where it 
finishes with the scan line, and marker 3 is the time when the 
camera starts the next scan line. Though B takes half as long 
as A, the period per scan line is the same. 
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the ability to work with fixed pieces of the 
image.

@param start first scanline to copy from.
@param end last scanline to copy from
@param offset offset into the data array to

copy to
@param data array to copy into
@param buffer selects the image buffer to read

from. Useful IMAGE_BUFFER_0 or IMAGE_BUFFER_1
*/
public static native int getScanlines(int

start, int end , int offset, byte []data, int
buffer);

The main method, takePhoto, captures one image into the
image buffer. First, it enables the interrupt, and sends the
camera a command to take a single image. There is a
small impasse here. It is preferred that the Java thread is
put to sleep at this point; however, it cannot be woken up
from the ISR because the TINIOS functions are not
reentrant. For this purpose, TINIOS allows developers to
register poll routines that are called every 4ms by the
system. A poll routine does a quick check to see if the
photo is finished, and wakes up the thread if it is. This poll
routine is registered right before putting the thread to
sleep. Upon waking up, the thread returns to Java. As
mentioned previously, the camera is double buffered, so
the image buffer to overwrite must be specified. In order
to let Java access the underlying image buffer by allowing
blocks of scan lines to be copied into Java byte arrays,
getScanlines is also implemented. 

A storage problem is also present. The TINI runtime takes
7 banks of a 512kB flash, leaving one bank for a user
application. As mentioned before, there is not a nonvolatile
file system on the high-speed design, so the file system
must be created from scratch. It is desirable to have every-
thing necessary to run from power-up in the flash bank,
including the Java applet that the HTTP server will serve to
the web browser. In order to include the applet in the
executable, the applet binary is converted into a format
compatible with the assembler and included in the data
segment of the library. Then there is a native method to
copy it from the library into a Java byte array. On startup,
the Java code reads the size of the applet, creates an array,
copies the applet into the array, and writes the contents to
the file system. It is a little clunky, but it means one can
start from a clean boot and have everything necessary to
start. The following methods perform this task:

/**
Extracts the sample jar file from the native
library. The demo application had a jar file
embedded inside the native library.
This allowed the jar file, the application, and
the native library all to be embedded in flash
format. 

@param dummy Array to copy jar image into.
Must be of greater size than that specified in
getJarFileSize()

*/
static native void getJarFile(byte []dummy);

/**
Gets the size of the embedded jar file
*/
static native int getJarFileSize();

The Java on top of the camera driver is much simpler. A
number of threads are running, most of them independent
from one another. First, there is the HTTP server. The
code for this comes from the HTTP server example
included with the TINI SDK. It is very lightweight, and is
not designed for servelets, cgi-bin processing, or other
features. Files are read from the TINI file system, which is
a hierarchical file system implemented in TINI’s
nonvolatile memory. On startup, the camera applet is read
from flash memory and written to the file system, and the
index.html page is generated.

Next, there is the camera image server. The camera
server has two main threads. The first thread opens a TCP
server socket on port 42877 and awaits connections from
an applet. How is server socket opened on an embedded
system? Actually, it is much like how it would be done
on a PC.

sockpuppet = new ServerSocket(42877);

Something to note is that a server socket binds to a port on
both the IPv4 and IPv6 interfaces. This means that no
changes are necessary to make the camera IPv6
compliant. IPv6's much larger address space will help
network appliances in the future, since they currently need
to fight for addresses with PCs, cell phones, and other
devices on a network.

When a process connects, it sends either an ‘A’ for connect
or ‘D’ for disconnect. On a connect command, the IP
address is added to a shared vector of connected addresses,
while the disconnect command removes it from the vector. 

sock = sockpuppet.accept();
ch = (char)sock.getInputStream().read();

switch (ch)
{
case 'A':

cwt.addAddress(sock.getInetAddress());
break;
case 'D':

cwt.removeAddress(sock.getInetAddress());
break;
}

sock.close();
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The other thread is the image transmitter. If there is an
address in the camera vector, it transmits the captured
image to it in UDP packets. The camera capture and trans-
mission have been optimized to run in parallel. The
capture has been double buffered to allow transmission
from one buffer while capture occurs in another. This is
possible because the camera only uses about 50% of the
CPU while transmitting. The asynchronous locking is all
done in Java. 

// 
// Notify the camera thread we are ready for
// the next frame.
//
synchronized(stopper)
{

stopper.notify();
}

No sort of image compression hardware is utilized, so the
image is transmitted raw. The packet layout is extremely
simple. Each packet has a 2-byte header, followed by the
data for five scan lines. The first byte is the frame number,
which is a rolling counter that increments for every frame
transmitted. The second byte is the vertical offset divided
by five. 

Finally, a configuration tool is run on the serial port. This
application, the CAmera SHell or CASH, is a menu-
driven utility that allows the IP address to be set, and the
connected users to be seen. A lot of this functionality is
taken from the Slush shell that comes with the TINI SDK.
To configure the camera, the user powers it up and
communicates with it over the serial port. The CASH
presents a simple user interface for setting the IP address.
Once configured, it can simply sit on the network, waiting
for a user. When someone connects with a web browser,
the camera serves the applet, which makes the connection
to the camera server and displays the images. While
TINIOS supports up to 24 simultaneous open sockets at a
time, for speed reasons we limit the camera to four users
at a time. Using multicast would alleviate this problem,
but Java applets do not support it.

The network camera captures and transmits 4.5 frames per
second, with an average network transmit rate of 200kB/s.
Something to remember is that very little support
hardware has been connected to the camera. There is no
image capture or encoding hardware in the system, which
means the DS80C400 is juggling image capture, image
transmitting, network traffic, web serving, and user inter-
action over the serial port at the same time. 

Conclusion

Let’s return to Joe. Seeing that TINI is the ideal solution
for his product, he continues his development of the
network door lock. With his low-cost, high-power
solution, Joe becomes the reigning king of the network
door lock market. He easily beats Troy’s solution that,
despite bearing the logo of a international software
monopoly, just costs too much. Alex’s solution, having to
overcome both camera and network issues, has difficulties
making it to market. Amiga leaves Troy and returns to
Joe, who promises her that he will never again let the
computer come between the two of them. With the
success of his business, Joe and Amiga retire to a small
cabin in Minnesota that, of course, has a network door
lock on every door.

Embedded devices need to be designed to solve specific
problems. It is a challenge to find the right balance
between power and cost. This becomes even more compli-
cated when adding network capability to a device. One
route is to try to extend an 8-bit microcontroller into the
networking world. While it is feasible, it will inevitably be
slow. Another approach is to use an embedded Linux, PC-
104, or Pocket PC device. While this will be fast and
responsive, it also adds a lot of unnecessary bloat. One
could build a smaller 32-bit solution, but that requires
licensing an operating system and TCP/IP stack.

The DS80C400 with TINI is a good in-between solution.
It has a robust, well-rounded TCP/IP stack that has been
hardened over time. It has an operating system with
support for multiple processes, Java, threading, and
synchronization. The processors can handle heavyweight
tasks like talking to a digital camera without the bloat of a
heavyweight operating system. If it works for the average
Joe, it might work for you.
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Do passive compo-
nents degrade
audio quality in
your portable
device?
For an audio circuit, passive components define the
gain, provide biasing and power-supply rejection, and
establish DC-blocking from one stage to the next. The
limitations of portable audio, in which space, height, and
cost are usually at a premium, force the use of passives
with small footprints, low profiles, and low cost. The
audible effect of these devices is worthy of some exami-
nation, because poor component choice can significantly
degrade the measured system performance.

Some designers assume that resistors and capacitors have
no measurable effect on audio quality, but the nonlinear
characteristics of many common passives used in the
audio signal path can seriously degrade total harmonic
distortion (THD). In some cases, the nonlinear contribu-
tion of passives exceeds that of active devices such as
amplifiers and DACs, which are assumed by many
designers to be the limiting factor in audio performance.

Sources of nonlinearity
Capacitors and resistors both exhibit a phenomenon called
voltage coefficient, in which a change in voltage across
the component changes its physical characteristics and
hence its value, to some degree. For example, a particular
1.00kΩ resistor with no voltage across it becomes a
1.01kΩ resistor when 10V is applied. That effect varies
enormously according to the component’s type, construc-
tion, and (for capacitors) chemistry. Voltage-coefficient
information is sometimes available from the manufacturer
as a graph, showing the percent change in capacitance vs.
the percent of rated voltage.

The voltage coefficient of modern film resistors is very
good, and usually below the level that is readily
measured in the lab. Capacitors, on the other hand, can
limit performance as a consequence of several departures
from the ideal:

• Voltage coefficient: Described previously.

• Dielectric absorption (DA): A memory-like effect in
which a discharged capacitor retains some of the charge
previously stored on it.

• Equivalent series resistance (ESR): This can be
frequency dependent, and can limit power output when
series-coupling capacitors drive the low impedance of a
headphone or speaker.

• Microphony: Some capacitors have a marked piezo-
electric effect, in which physical stress and flexure of
the capacitor generates a voltage across the terminals.

• Poor tolerance: For most large-valued capacitors
(several µ F and higher), accuracy is not tightly
specified. Resistors, on the other hand, are readily and
inexpensively specified for a tolerance of 1% or 2%.

The following discussion outlines a test method consisting
of a simple test circuit and readily available audio test
equipment that can quantify the undesired effects of
capacitors in the audio signal path. The intent is not to
pass judgement on particular sizes, voltage ratings, and
case types, but to alert readers to the phenomena, show
representative results, and offer a test method that allows
meaningful comparisons and conclusions.

Test description
Nonlinear AC effects are easily found in capacitors. The
frequency response of analog audio (necessarily restricted)
dictates that most circuit blocks include highpass, lowpass,
or bandpass filter circuits, and that the nonlinearities of
such filters can have real and measurable effects.

Consider a simple, highpass RC filter (Figure 1). At
frequencies well above its -3dB cutoff, the capacitor’s
impedance is low with respect to that of the resistor. The
application of a high-frequency AC signal develops very
little voltage across the capacitor, so any change due to the
voltage coefficient should be minimal. Signal current
flowing through the capacitor, however, generates a corre-
sponding voltage across the capacitor’s ESR. Any
nonlinear component of that ESR sums in at the appro-
priate level and can degrade THD.

At and near the -3dB cut-off point, however, impedances
of the capacitor and resistor are of the same order. The
result is a significant AC voltage across the capacitor at a
point in the response that imposes only minor attenuation
on the input signal. Thus, any voltage-coefficient effects
tend to peak around that point.

16

Figure 1. Simple highpass RC filter.
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By focusing on THD at the -3dB cutoff, this test high-
lights nonideal behavior—primarily that due to the
voltage coefficient. The test circuit is based on a highpass
filter with -3dB cutoff at 1kHz and an audio analyzer
(Audio Precision System One) that looks for any degrada-
tion of THD+N while various capacitors of differing
construction, chemistry, and type are substituted. A 1µF
capacitor value was chosen because it offers a wide choice
of capacitor types for testing. It is loaded with a 150Ω
resistor to form a headphone filter with nominal 1kHz
cutoff. Note that the capacitor under test has no DC bias
across it. Input and output have the same DC potential.

Polyester capacitor and reference baseline
A plot of THD+N vs. frequency in Figure 2 shows the
limit of resolution in the test setup, and also the minimal
effects of a 25V through-hole polyester capacitor not
typically used in portable designs. Little, if any, THD
degradation due to voltage coefficient is apparent. Note
that the polyester capacitor allows THD to rise below
1kHz, but the output signal is actually falling with a
frequency below 1kHz, thereby reducing the ratio of
signal-to-noise (plus distortion) registered by the analyzer.
The key region is at and above 1kHz, where the polyester
capacitor performs well—only slightly worse than the
reference measurement.

Tantalum dielectric
Tantalum capacitors are often found in portable devices,
usually for blocking DC voltage to a headphone and espe-
cially if more than a few µF are required. Another plot of
THD+N vs. frequency in Figure 3 compares three varia-
tions of a popular SM tantalum capacitor with a tradi-
tional, through-hole “dipped” tantalum capacitor readily
available in the lab. The capacitors again have 1µF values;
only their physical dimensions (case size) and voltage
ratings differ. See Table 1. No DC bias was applied to the
capacitors during this test.

Ceramic dielectric
Ceramic capacitors are often used for AC-coupling
between audio stages, and in bass-boost and filtering
circuits. Various dielectric types are available, as Figure
4 illustrates, based on the components listed in Table 2. 

Figure 3. Comparison of THD+N vs. frequency for various tantalum
capacitors in a 1kHz highpass passive filter.
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Figure 2. THD+N vs. frequency for a 1kHz highpass passive filter with
polyester capacitor, compared to a reference measurement.
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Figure 4. Comparison of THD+N vs. frequency for various ceramic
capacitors in a 1kHz highpass passive filter.
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Value Case Size Voltage Rating (V) Dielectric Type
1µF 0603 10 X5R
1µF 0805 16 X7R
1µF 1206 16 X7R

Table 2. SM ceramic capacitors tested in
Figure 4

Value Case Size L x W (mm) Voltage Rating (V)
1µF A (3.2 x 1.6) 25
1µF B (3.5 x 2.8) 35
1µF C (6.0 x 3.2) 50

Table 1. Comparison of SM tantalum
capacitors tested in Figure 3



Figure 4 also depicts the performance of a through-hole
ceramic capacitor selected from a random assortment of
lab components. The worst result is just 0.2% THD at
the -3dB point for the X5R dielectric. To put it in
perspective, that performance equates to distortion at the
-54dB level. The THD for most 16-bit audio DACs and
CODECs, with respect to full scale, is at least an order of
magnitude better than this. Note that C0G dielectrics can
exhibit very low voltage coefficients, but at this time
their capacitance ranges are restricted to values near
0.047µF and below. These tests were based on 1µF
capacitors, so C0G types were not included.

How to avoid capacitor voltage-coefficient
effects

Figure 5 shows a line-input topology whose novel AC-
coupling configuration allows a much lower valued input
capacitor than that of a traditional configuration. The input
capacitor in this example (C1) is 0.047µF, which can be
specified as a ceramic with C0G dielectric in a 1206 case
size—a configuration that minimizes the THD contribu-
tion from voltage-coefficient effects. DC feedback for the
op amp (which should be a device with low input-bias
current, such as the MAX4490) is provided by the two
100kΩ resistors. The effect of the DC-feedback path at
audio frequencies is attenuated by C2 and R5, so the
majority of the feedback is from R1 and R2 through C1.
With the values shown, the -3dB point is set at 5Hz.

This type of compound feedback ultimately has a first-
order LF rolloff, but can be tuned for a 2nd-order response
around the highpass cutoff frequency.  Consequently, pay
careful attention to overshoot and peaking when adjusting
the component values from those shown in Figure 6.
Values in the example approximate a maximally flat
highpass function. This circuit principle can easily be
adapted to quasidifferential (ground-sensing) and fully
differential input stages.

The stereo headphone driver IC shown in Figure 7
(MAX4410) features an innovative technology called
DirectDrive, in which the output bias, powered from a
single positive supply, is set at 0V to allow direct DC-
coupling to the headphones. Several advantages follow:

• Large DC-blocking capacitors (100µF–470µF, typ) are
eliminated, which removes a significant THD contribu-
tion based on voltage coefficients.

• The lower -3dB cutoff, now defined by the input
capacitor and input resistor, is around 1.6Hz with the
values shown in Figure 7, but a -3dB point of 1.6Hz in
standard AC-coupled headphone drivers for 16Ω head-
phones requires about 6200µF. In addition, the low-
frequency response is no longer load dependent.

• Eliminating the large-case capacitors saves a signifi-
cant amount of PCB area. Such capacitors are
expensive when compared with the 1µF and 2.2µF
ceramic compacitors required by MAX4410 charge-
pump circuitry.

• To enable the outputs to sink and source load current
with a ground-referenced load, the chip generates an
internal negative supply for the amplifier. Because that
supply (PVSS) is an inverted version of the positive
supply (VDD), the available voltage swing at the output
(almost 2VDD) is twice that of a traditional single-
supply, AC-coupled headphone driver.

In this example, it has been a relatively simple matter to
minimize the voltage-coefficient effect of input capacitors
on audio bandwidth by oversizing those capacitors. Given
a 10kΩ input resistor, choose a 10µF ceramic for CIN.
That combination places the -3dB point at 1.6Hz, so the
worst effects due to voltage-coefficient nonlinearity are at
least an order of magnitude below the lowest audible
frequencies being reproduced.
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Figure 5. This novel line-input stage reduces degradation due to
voltage-coefficient effects. Including the traditional AC-
coupling capacitor inside the amplifier’s error path lowers
the value of that capacitor, and enables the use of C0G
capacitors in portable designs.
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Regarding larger valued capacitors, Figure 8 compares
two types of 100µF capacitors used with a 16Ω resistor in
forming a passive highpass filter. At the 100Hz, -3dB
frequency, both types contribute significant THD due to
the capacitors’ voltage coefficient. The 100µF tantalum
contribution to THD+N is 0.2% at the -3dB cutoff, which
is equal to the worst-performing ceramic device in Figure
4. Eliminating those devices from the audio path using
Maxim’s DirectDrive components, or similar techniques,
improves the audio quality significantly and notably at
low frequencies. In Figure 8, a MAX4410 is used to
derive the reference plot (limit of measurement).

Summary
Passive components can add real, measurable degradation
to an analog audio path. Those effects can be easily
examined and assessed using standard audio test
equipment. Of the capacitor types tested, aluminum-elec-
trolytic and polyester capacitors give the lowest THD.
X5R ceramics give the poorest THD.

When choosing active components, take care to minimize
the number of AC-coupling capacitors in analog audio
stages. For example, use differential signal paths or
DirectDrive components for headphone feeds (e.g.,
MAX4410). When possible, design audio circuitry with
low capacitance values in which C0G or PPS dielectrics
can be used. To reduce voltage-coefficient effects in AC-
coupled audio stages, restrict potential problems to the
subaudio frequencies by lowering the -3dB point much
more than necessary, by 10x, for example. 
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Figure 7. In this typical application circuit for the MAX4410 stereo headphone driver, setting CIN to 10µF restricts any voltage-coefficient effects to
subaudible frequencies. Large-valued coupling capacitors at the output are not necessary.
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